Controlling the orientation of spin-correlated radical pairs by covalent linkage to nanoporous anodic aluminum oxide membranes.

نویسندگان

  • Hsiao-Fan Chen
  • Daniel M Gardner
  • Raanan Carmieli
  • Michael R Wasielewski
چکیده

Ordered multi-spin assemblies are required for developing solid-state molecule-based spintronics. A linear donor-chromophore-acceptor (D-C-A) molecule was covalently attached inside the 150 nm diam. nanopores of an anodic aluminum oxide (AAO) membrane. Photoexcitation of D-C-A in a 343 mT magnetic field results in sub-nanosecond, two-step electron transfer to yield the spin-correlated radical ion pair (SCRP) (1)(D(+)˙-C-A(-)˙), which then undergoes radical pair intersystem crossing (RP-ISC) to yield (3)(D(+)˙-C-A(-)˙). RP-ISC results in S-T0 mixing to selectively populate the coherent superposition states |S'> and |T'>. Microwave-induced transitions between these states and the unpopulated |T(+1)> and |T(-1)> states result in spin-polarized time-resolved EPR (TREPR) spectra. The dependence of the electron spin polarization (ESP) phase of the TREPR spectra on the orientation of the AAO membrane pores relative to the externally applied magnetic field is used to determine the overall orientation of the SCRPs within the pores at room temperature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Nanoporous Anodic Aluminum Oxide (AAO) Characteristics On Solar Absorptivity

Nanoporous anodic aluminum oxide (AAO) has been used in many different fields of science and technology, due to its great structural characteristics. Solar selective surface is an important application of this type porous material. This paper investigates the effect of nanoporous AAO properties, including; film thickness, pore area percentage and pore diameter, on absorption spectra in the rang...

متن کامل

Rf glow discharge optical emission spectrometry for the analysis of arrays of Ni nanowires in nanoporous alumina and titania membranes

During the last decade, a great variety of nanostructures (nanotubes, nanofibers or nanowires) based on metals, carbons, polymers or semiconductors, have been synthesized following different synthesis procedures by using nanoporous anodic alumina membranes (AAM) as templates [1]. The principal reason for using templates of nanoporous AAM as precursor patterns lies on the possibility to obtain, ...

متن کامل

Optimization of the FeCo nanowire fabrication embedded in anodic aluminum oxide template by response surface methodology

Anodic aluminum oxide (AAO) fabricated by two step anodization technique, is used as a template to synthesize FeCo nanowire arrays by AC electrodeposition technique. Response surface methodology (RSM) is applied to design the experiments, fit an empirical model and optimize the conditions to achieve the best magnetic properties. The magnetic properties, pore dimensions, composition and structur...

متن کامل

Fabrication of Nanoporous Template of Aluminum Oxide with High Regularity Using Hard Anodization Method

Anodizing is an electrochemical process that converts the metal surface into a decorative, durable, corrosion-resistant, anodic oxide finish. Aluminum is ideally suited to anodizing, although other nonferrous metals, such as magnesium and titanium, also can be anodized. The anodic oxide structure originates from the aluminum substrate and is composed entirely of aluminum oxide. This aluminum ox...

متن کامل

Fabrication of Nanoporous Template of Aluminum Oxide with High Regularity Using Hard Anodization Method

Anodizing is an electrochemical process that converts the metal surface into a decorative, durable, corrosion-resistant, anodic oxide finish. Aluminum is ideally suited to anodizing, although other nonferrous metals, such as magnesium and titanium, also can be anodized. The anodic oxide structure originates from the aluminum substrate and is composed entirely of aluminum oxide. This aluminum ox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical communications

دوره 49 77  شماره 

صفحات  -

تاریخ انتشار 2013